

The University of Tulsa Petroleum Reservoir Exploitation Projects

Modified ES-MDA Algorithms for Data Assimilation and Uncertainty Quantification

Javad Rafiee and Al Reynolds

12th EnKF Workshop June 14, 2017

< □ > < □ > < □ > < □ > < □ > = Ξ

- Ensemble Smoother with Multiple Data Assimilation (ES-MDA)
- Discrepancy principle and choice of inflation factors in ES-MDA
- Convergence (after Geir Evensen)

ES-MDA

Define

$$\Delta M^{f,i} = \frac{1}{\sqrt{N_{\rm e} - 1}} \left[m_1^{f,i} - \bar{m}^{f,i}, ..., m_{N_{\rm e}}^{f,i} - \bar{m}^{f,i} \right], \tag{1}$$

and

$$\Delta D^{f,i} = \frac{1}{\sqrt{N_{\rm e} - 1}} \left[d_1^{f,i} - \bar{d}^{f,i}, ..., d_{N_{\rm e}}^{f,i} - \bar{d}^{f,i} \right], \tag{2}$$

O > <
 O >

where
$$\bar{d}^{f,i} = (1/N_e) \sum_j d_j^{f,i}$$
 and $\bar{m}^{f,i} = (1/N_e) \sum_j m_j^{f,i}$.

Reynolds

æ

ヨトィヨト

ES-MDA Algorithm

- Choose the number of data assimilations, N_a , and the coefficients, α_i for $i = 1, ..., N_a$.
- 2 Generate initial ensemble $\{m_j^{f,1}\}_{j=1}^{N_e}$
- **③** For $i = 1, ..., N_a$:
 - (a) Run the ensemble from time zero,
 - (b) For each ensemble member, perturb the observation vector with the inflated measurement error covariance matrix, i.e., dⁱ_{uc,j} ~ *N*(d_{obs}, α_iC_D).
 - (c) Use the update equation to update the ensemble.

$$m_{j}^{a,i} = m_{j}^{f,i} + \Delta M^{f,i} (\Delta D^{f,i})^{T} \left[\Delta D^{f,i} (\Delta D^{f,i})^{T} + \alpha_{i} C_{D} \right]^{-1} \left(d_{uc,j}^{i} - d_{j}^{f,i} \right)$$
$$m_{j}^{f,i+1} = m_{j}^{a,i}$$

• Comment: Requires $\sum_{k=1}^{N_a} \frac{1}{\alpha_k} = 1$.

June 14, 2017 (4/29)

Dimensionless Sensitivity

• The dimensionless sensitivities control the change in model parameters that occurs when assimilating data (Zhang et al., 2003; Tavakoli and Reynolds, 2010). The standard dimensionless sensitivity is defined as

$$\widehat{G}_{D}^{i} \equiv C_{D}^{-1/2} G(\bar{m}^{f,i}) C_{M}^{1/2}, \qquad (3)$$

where G(m) is the sensitivity matrix for $d^{f}(m)$ where

$$\widehat{g}_{i,j} = \frac{\partial d_i^f(m)}{\partial m_j}.$$
(4)

• Dimensionless sensitivity matrix components are

$$g_{i,j} = \frac{\sigma_{m,j}}{\sigma_{d,i}} \frac{\partial d_i^f}{\partial m_j}.$$
 (5)

• The direct analogue of the standard dimensionless sensitivity matrix in ensemble based methods is given by

$$G_{D}^{i} \equiv C_{D}^{-1/2} \Delta D^{f,i} \approx C_{D}^{-1/2} G(\bar{m}^{f,i}) \Delta M^{f,i}.$$
 (6)

Modified ES-MDA Algorithms for Data Assimilation and

Recall the ES-MDA update equation

$$m_{j}^{a,i} = m_{j}^{f,i} + \Delta M^{f,i} (\Delta D^{f,i})^{T} \left[\Delta D^{f,i} (\Delta D^{f,i})^{T} + \alpha_{i} C_{D} \right]^{-1} \left(d_{\mathrm{uc},j}^{i} - d_{j}^{f,i} \right)$$
(7)

Using the definition of the dimensionless sensitivity $(G_D^i \equiv C_D^{-1/2} \Delta D^i)$, we can write ES-MDA update equation as

$$m_{j}^{a,i} = m_{j}^{f,i} + \Delta M^{f,i} (G_{D}^{i})^{T} \left[G_{D}^{i} (G_{D}^{i})^{T} + \alpha_{i} I_{N_{d}} \right]^{-1} C_{D}^{-1/2} \left(d_{uc,j}^{i} - d_{j}^{f,i} \right).$$
(8)

for $j = 1, ..., N_e$.

Why do we need damping?

• ES similar to doing one GN iteration with full step using the same average sensitivity coefficient to update each ensemble method with the forecast as the initial guess.

$$O(m) = \frac{1}{2} \| m - \bar{m} \|_{C_{M}^{-1}}^{2} + \frac{1}{2} \| d^{f}(m) - d_{\text{obs}} \|_{C_{D}^{-1}}^{2}$$

GN based on approximating O(m) by a quadratic but far from a minimum quadratic approximation good only in small region around current model. TR better than line search.

- Proof of convergence of GN requires the possibility of taking a full (unit) step.
- Juris Rommelsee, PhD thesis, TU Delft (2009).

۲

Least Squares Problem

Similar to Eq. 8, one can update the mean of *m* directly as

$$\bar{m}^{a,i} = \bar{m}^{f,i} + \Delta M^{f,i} (G_D^i)^T \left[G_D^i (G_D^i)^T + \alpha_i I_{N_d} \right]^{-1} C_D^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right).$$
(9)

It is easy to show that $\bar{m}^{a,i}$ is the solution of the regularized least squares problem given by

$$x^{a,i} = \arg\min_{x} \left\{ \frac{1}{2} \left\| G_D^i x - y \right\|^2 + \frac{\alpha_i}{2} \left\| x \right\|^2 \right\},$$
 (10)

where

$$x = (\Delta M^{f,i})^+ (m - \bar{m}^{f,i}),$$
 (11)

$$y = C_D^{-1/2} \left(d_{\rm obs} - \bar{d}^{f,i} \right), \tag{12}$$

where $(\Delta M^{f,i})^+$ is the pseudo-inverse of $\Delta M^{f,i}$.

Assume

$$\|y\| = \|C_D^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right)\| > \eta, \tag{13}$$

where η is the noise level given by

$$\eta^{2} = \|C_{D}^{-1/2} \left(d_{\text{obs}} - d^{f}(m_{\text{true}}) \right)\|^{2} \approx N_{d}.$$
(14)

• Based on the discrepancy principle the minimum regularization parameter, α_i , should be selected such that

$$\eta = \|G_D^i x^{a,i} - y\| = \|C_D^{-1/2}(\bar{d}^a - d_{\text{obs}})\|.$$
(15)

Reynolds

Discrepancy Principle

• From Eqs. 13 and 15 we can write

$$\|C_D^{-1/2}\left(d_{\rm obs} - \bar{d}^{f,i}\right)\| > \eta = \alpha_i \left\| \left[G_D^i(G_D^i)^T + \alpha_i I_{N_{\rm d}} \right]^{-1} C_D^{-1/2}\left(d_{\rm obs} - \bar{d}^{f,i}\right) \right\|.$$
(16)

Therefore, for some $\rho \in (0, 1)$

$$\rho \| C_D^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right) \| = \alpha_i \left\| \left[G_D^i (G_D^i)^T + \alpha_i I_{N_{\text{d}}} \right]^{-1} C_D^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right) \right\|.$$
(17)

• Hanke (1997) proposed RLM:

$$\rho^2 \left\| C_D^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right) \right\|^2 \le \alpha_i^2 \left\| \left[G_D^i (G_D^i)^T + \alpha_i I_{N_d} \right]^{-1} C_D^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right) \right\|^2.$$
(18)

- Iglesias (2015) used Eq. 18 for choosing inflation factors in his version of ES-MDA (IR-ES).
- Le et al. (2015) used a much stricter condition based on Eq. 18 for choosing inflation factors in ES-MDA-RLM.

An Analytical Procedure for Calculation of Inflation Factors

Recall that

$$\rho^{2} \left\| C_{D}^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right) \right\|^{2} \le \alpha_{i}^{2} \left\| \left[G_{D}^{i} (G_{D}^{i})^{T} + \alpha_{i} I_{N_{\text{d}}} \right]^{-1} C_{D}^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right) \right\|^{2}.$$
(18)

Using the definitions of $y = C_D^{-1/2} \left(d_{obs} - \bar{d}^{f,i} \right)$ and $C \equiv G_D^i (G_D^i)^T + \alpha_i I_{N_d}$,

$$\rho^{2} \leq \alpha_{i}^{2} \frac{\left\| C^{-1} y \right\|^{2}}{\left\| y \right\|^{2}}.$$
(19)

$$\frac{\left\|C^{-1}y\right\|^{2}}{\left\|y\right\|^{2}} \ge \min_{j} \gamma_{j}^{2} = \min_{j} \frac{1}{\left(\lambda_{j}^{2} + \alpha_{i}\right)^{2}} = \frac{1}{\left(\lambda_{1}^{2} + \alpha_{i}\right)^{2}}$$
(20)

where γ_j 's are the eigenvalues of C^{-1} and λ_j 's are the singular values of G_D^i .

An Approximate Method for Inflation Factors

Instead of enforcing

$$\rho^2 \leq \alpha_i^2 \frac{1}{\left(\lambda_1^2 + \alpha_i\right)^2},$$

we use

$$\rho^{2} \leq \alpha_{i}^{2} \frac{1}{\left(\overline{\lambda}^{2} + \alpha_{i}\right)^{2}},$$

$$\alpha_{i} = \frac{\rho}{1 - \rho} \overline{\lambda}^{2}$$
(21)
(22)

where $\overline{\lambda}$ is the average singular value of G_D^i given by

$$\overline{\lambda} = \frac{1}{N} \sum_{j=1}^{N} \lambda_j \quad \text{where} \quad N = \min\{N_d, N_e\}.$$
(23)

Motivation: Discrepancy principle overestimates the optimal inflation factor in the linear case.

We use
$$\rho = 0.5$$
, so $\alpha_i = \overline{\lambda}^2$.

- Specify the number of data assimilation steps (N_a) .
- Assume that the inflation factors form a monotonically decreasing geometric sequence:

$$\alpha_{i+1} = \beta^i \alpha_1, \tag{24}$$

Determine

$$\alpha_1 = \overline{\lambda}^2 = \left(\frac{1}{N} \sum_{j=1}^N \lambda_j\right)^2.$$
(25)

ES-MDA with Geometric Inflation Factors

• Recall that ES-MDA requires that

$$1 = \sum_{i=1}^{N_a} rac{1}{lpha_i} = \sum_{i=1}^{N_a} rac{1}{eta^{i-1} lpha_1}$$

$$\frac{1 - (1/\beta)^{N_{a}-1}}{1 - (1/\beta)} = \alpha_{1},$$
(26)

for β .

• We call the proposed method ES-MDA-GEO.

Comments on "Convergence" of ES-MDA

- Classifying ES-MDA as an iterative ES may be augmentable; stops when $\sum_{k=1}^{N_a} \frac{1}{\alpha_k} = 1$.
- Criterion based on ensuring methods samples correctly in the linear Gaussian case as ensemble size goes to infinity.
- Analogue of Hanke's suggestion for RLM, should terminate ES-MDA when

$$\frac{1}{N_d} \| C_D^{-1/2} \left(d_{\text{obs}} - \bar{d}^{f,i} \right) \|^2 < \tau^2$$

where $\tau > 1/\rho = 2$.

- This means, terminate when the normalized objective function is less that 4.
- GE: Does ES-MDA converge as $N_a \rightarrow \infty$? To what?

Numerical Examples

- The performance of ES-MDA-GEO is compared to IR-ES, ES-MDA-RLM and ES-MDA-EQL.
- To investigate the performance of the methods, we define the following measures:

$$\text{RMSE} = \frac{1}{N_e} \sum_{j=1}^{N_e} \left(\frac{1}{N_m} \sum_{k=1}^{N_m} (m_{\text{true},k} - m_{j,k})^2 \right)^{1/2},$$
 (27)

$$\overline{\sigma} = \frac{1}{N_m} \sum_{k=1}^{N_m} \sigma_k, \tag{28}$$

$$O_{Nd} = \frac{1}{N_{\rm e}N_{\rm d}} \sum_{j=1}^{N_{\rm e}} (d_j^f - d_{\rm obs})^T C_D^{-1} (d_j^f - d_{\rm obs}).$$
(29)

Reynolds

Modified ES-MDA Algorithms for Data Assimilation and

June 14, 2017 (16/29)

Example 1: 2D Waterflooding

Two-dimensional waterflooding problem:

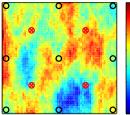
- 64×64×1 grid.
- 9 production wells (BHP control).
- 4 injection wells (BHP control).

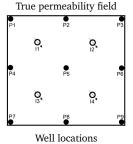
Observed data:

- Oil and water production rates and water injection rates.
- Standard deviations of measurement error: 3% of true data.
- Data from the first 36 months are history-matched and data for next 20 are used for prediction.

Model parameters:

• The gridblock log-permeabilities are considered as the model parameters.



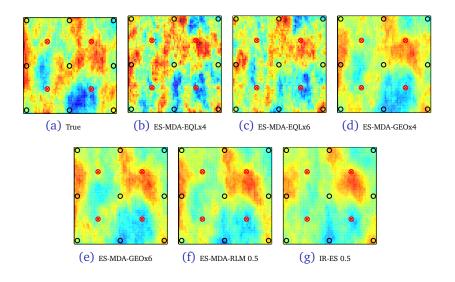


Example 1: Results

- An ensemble of 400 realizations is generated from the prior distribution.
- First inflation factor from DP is 1049.4; N_a of 4 and 6, respectively, give β equal to 0.102 and 0.264.
- Comment IR-ES with $\rho = 0.8$ did not converge after 200 iterations.

1	Prior	ES-MDA-RLM	IR-ES	ES-MDA-EQL		ES-MDA-GEO		
	FIIOI	$\rho = 0.5$	$\rho = 0.5$	$N_a = 4$	$N_a = 6$	$N_a = 4$	$N_a = 6$	
RMSE	2.23	0.613	0.902	1.45	1.09	0.586	0.633	
$\overline{\sigma}$	0.995	0.334	0.517	0.258	0.255	0.380	0.362	
O _{Nd}	16121	1.06	8.14	8.45	1.344	25.2	5.78	
Iter	-	21	9	4	6	4	6	

The posterior mean of the log-permeability



Modified ES-MDA Algorithms for Data Assimilation and

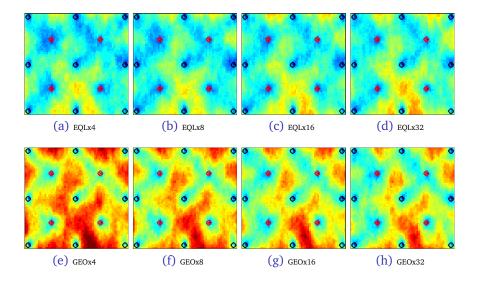
	Prior	ES-MDA-EQL					ES-MDA-GEO					
Iter	-	4	8	16	32	64	4	8	16	32	64	
RMSE	2.23	1.451	0.977	0.969	0.838	0.732	0.586	0.537	0.553	0.560	0.585	
$\overline{\sigma}$	0.995	0.258	0.257	0.267	0.275	0.284	0.380	0.351	0.329	0.317	0.312	
O_{Nd}	16121	8.451	1.094	0.947	0.907	0.922	25.246	6.689	1.413	0.978	0.905	

Table: Effect of number of iteration on ES-MDA

Reynolds

Modified ES-MDA Algorithms for Data Assimilation and

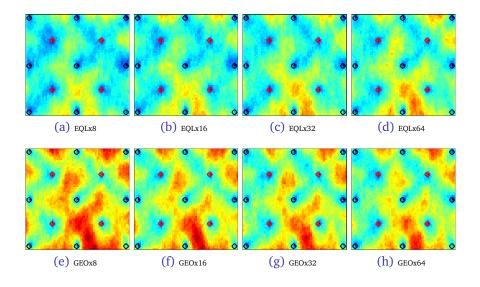
Posterior S.D. Versus N_a with 95% Truncation



Modified ES-MDA Algorithms for Data Assimilation and

June 14, 2017 (21/29)

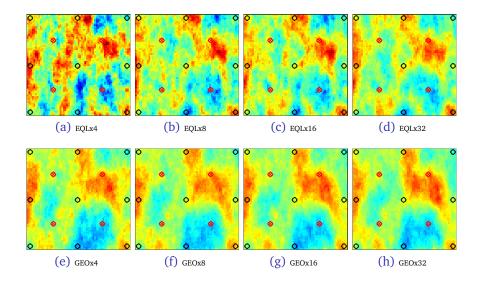
Posterior S.D. Versus N_a with 95% Truncation



Modified ES-MDA Algorithms for Data Assimilation and

June 14, 2017 (22/29)

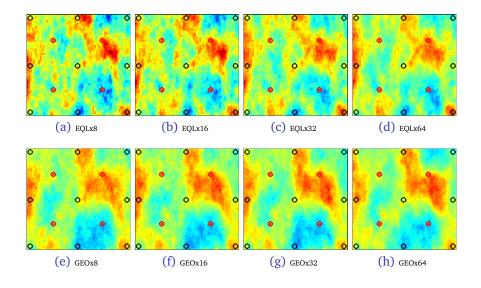
Posterior Mean Versus N_a with 95% Truncation



Modified ES-MDA Algorithms for Data Assimilation and

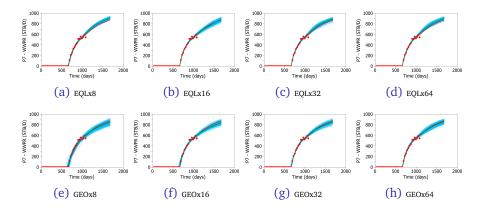
June 14, 2017 (23/29)

Posterior Mean Versus N_a with 95% Truncation



June 14, 2017 (24/29)

Data Match - P7 Water Rate



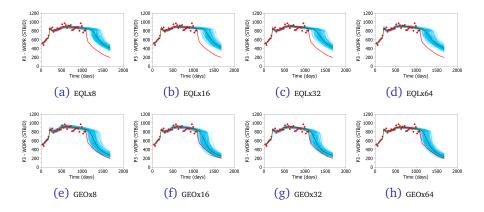
Reynolds

Modified ES-MDA Algorithms for Data Assimilation and

June 14, 2017 (25/29)

ъ

Data Match - P3 Oil Rate

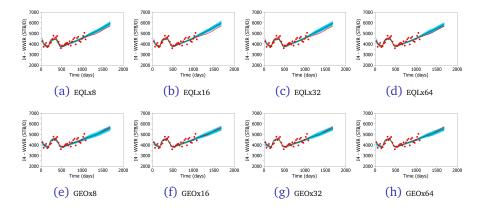


Reynolds

Modified ES-MDA Algorithms for Data Assimilation and

June 14, 2017 (26/29)

Data Match - I4 Injection Rate



Reynolds

Modified ES-MDA Algorithms for Data Assimilation and

June 14, 2017 (27/29)

	Prior	ES-MDA-EQL					ES-MDA-GEO					
Iter	-	4	8	16	32	64	4	8	16	32	64	
RMSE	2.23	1.451	0.977	0.969	0.838	0.732	0.586	0.537	0.553	0.560	0.585	
$\overline{\sigma}$	0.995	0.258	0.257	0.267	0.275	0.284	0.380	0.351	0.329	0.317	0.312	
O_{Nd}	16121	8.451	1.094	0.947	0.907	0.922	25.246	6.689	1.413	0.978	0.905	

Table: Effect of number of iteration on ES-MDA

Reynolds

Modified ES-MDA Algorithms for Data Assimilation and

э

Summary and Conclusions

- We presented analytical expression that enables the exact calculation of the minimum inflation factor that satisfies the inequality derived from the discrepancy principle that is the basis of IR-ES.
- The ES-MDA-GEO algorithm developed here is an efficient data assimilation method that allows the user to specify a priori the number of data assimilation step.
- ES-MDA-GEO is more robust than using the original ES-MDA algorithm with equal inflation factors.
- ES-MDA-GEO and ES-MDA-equal appear to converge to different distributions. Which is best?
- The performance of IR-ES highly depend on the parameters ρ , and IR-ES with $\rho = 0.8$ (suggested by the author) did not converge after 200 iterations.